From polarity to reduplication in Gā

Sampson Korsah
Universität Leipzig

Claim: I argue that Gā (Niger-Congo: Ghana) negative polarity items (NPIs) which are derived by reduplicating indefinite DPs are analyzeable as a spellout of a valued \(\text{pol} \) arity feature on such D heads. Given that all indefinite DPs in the language become NPIs whenever they are reduplicated, and all non-reduplicated indefinite DPs can be reduplicated under the scope of negation, I assume that all DPs which are headed by indefinite Ds are of this type: \(D_{[\text{unN}(P), \text{pol}:-]} \); they have a polarity feature whose valuation is interpreted as reduplication at PF. The morphology of the relevant constructions suggests that the timing of the valuation operations (Pesetsky & Torrego 2007) of T(ense) on NEG and V, and \(\text{pol} \) on DP are strictly ordered especially for the purposes morpheme linearization.

Data: Reduplicating indefinite DPs to form NPIs is a productive morpho-semantic process in Gā. In (1), such NPIs, similar to the \(\text{any} \) series in English, are derived by totally copying indefinite D heads i.e. \(\text{ko} \) which have taken generic meaning N heads i.e. person, thing, place, time, day, as complements. Interestingly, all other NPs even with specific meaning N heads which can occur as complements of \(\text{ko} \) can participate in this derivational process, as (2a-b) show. It is significant to note that what is reduplicated is an XP, a phenomenon which may be described as ‘syntactic copying’ (Kimper 2008). Thus in (2c), the N head is modified by an adjective \(\text{agbo} \) ‘big’. (2d) shows that definite DPs do not allow this NPI formation strategy, and when \(\text{ko} \) selects a plural NP complement (in which case it agrees with the noun in number), the NPI formation process is again blocked (2e). The latter situation may be attributable to the presence of the plural marker, given that many languages form their NPIs with an indefinite DP headed by a form related to the numeral one. Here, it is insightful to note that the form \(\text{ko} \) may be morphologically related to how Gā expresses the numeral ‘one’ i.e. \(\text{e} - \text{ko} \).

(3) shows that the indefinite DPs may freely occur with or without negation. But their reduplicated (NPI) forms are only possible in the context of negation as shown by (4a) and (5a), supporting a view in the literature e.g. Zeijlstra (2013), that though NPIs do not induce semantic negation by themselves, they are only licensed in the context of negation. (4) and (5) also show that unlike languages like English, Gā NPIs can freely occur in both subject and object positions in the clause, just like Hindi (Lahiri 1998), Japanese, Korean and Basque.

Analysis: To the best of my knowledge, there exists no formal account of the present prenomemon in the literature. Given that the semantics of the NPIs created via reduplication is non-compositional (Regier 1998), I assume that we get a reduplicated indefinite DP as an NPI when the D head of the indefinite DP which (I assume) also carries a polarity feature is valued by a c-commanding NEG head as in (8c) (see Laka (1990); but also Colins and Postal (2014) for an alternative view). A valued \(\text{pol} \) overtly realizes \(\text{red} \) at PF. PF interpretes this as an instruction to totally copy the DP e.g. Frampton (2009). Meanwhile at LF, the valued \(\text{pol} \) is interpreted as an instance of negative polarity. Conversely, an unvalued \(\text{pol} \) realizes a null \(\text{red} \). This is the nature of indefinite DPs which are not NPIs. Thus I postulate two vocabulary items for indefinite DPs in Gā (7).

A few potential problems that the present proposal may present are: (i) how do the morphemes linearize, since the form of NEG depends on its T value (compare (5) and (6)), and NEG is pronounced on V, (ii) when do subject NPIs (in Spec vP) raise to Spec TP to reflect the word order at PF? To solve this problem, I assume that the valuation operations are strictly ordered: T on NEG is valued by T which has a valued T, before the T feature on V is valued by the valued T on NEG. Here, valuation is construed in terms of Pesetsky & Torrego (2007). An illustration is given in (8a-b). Regarding (ii), NEG values the \(\text{pol} \) feature of D (8c) before it is raised to Spec TP. And following Uribe-Etxebarria (1995), the c-commanding relation is only an LF requirement.

Summary: The analysis proposed here addresses the key questions about NPIs postulated by Ladusaw(1996): the licensor is NEG, the licensee is (indefinite) D which needs to value its \(\text{pol} \) feature, the licensing relation requires NEG to c-command D, and an unlicensed D results in a non-reduplicated indefinite DP at PF, and hence no NPI.
(1) NPIs in Ga

<table>
<thead>
<tr>
<th>INDEF DP</th>
<th>NPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. mọ ko</td>
<td>mọko-mọko</td>
</tr>
<tr>
<td>b. ná ko</td>
<td>náko-náko</td>
</tr>
<tr>
<td>c. hékó</td>
<td>hékó-hékó</td>
</tr>
<tr>
<td>d. bee ko</td>
<td>beeko-beeko</td>
</tr>
<tr>
<td>e. gbi ko</td>
<td>gbi-gbiko</td>
</tr>
</tbody>
</table>

(2) Extension to other DPs

<table>
<thead>
<tr>
<th>INDEF DP</th>
<th>NPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. shié ko</td>
<td>shié ko-shié ko</td>
</tr>
<tr>
<td>b. dáträfónyo ko</td>
<td>dáträfónyo ko-dáträfónyo ko</td>
</tr>
<tr>
<td>c. shié agbo ko</td>
<td>shié agbo ko-shié agbo ko</td>
</tr>
<tr>
<td>d. shié le</td>
<td>*shié-le-shié-le</td>
</tr>
<tr>
<td>e. shié-i ko-mtei</td>
<td>*shíai komei-shíai komei</td>
</tr>
</tbody>
</table>

(3) a. Kwei na shié ko .
K. see house INDEF
‘Kofi saw a house.’

b. Kwei é-ná-áá shié ko .
K. SBJ-see-NEG house INDEF
‘Kwei did not see a house.’

K. SBJ-see-NEG house-RED
‘Kwei did not see any house.’

b. *Kwei na shiéko-shiéko .
K. SBJ-see house-RED

INDEF
‘Nobody saw a house.’

someone-RED see house INDEF

(6) Mọko-mọko é-ná-η shié ko.
someone-RED SBJ-see-NEG house INDEF
‘Nobody will see a house.’

(7) VIs for RED:

8a. [TP [T’ T] [T’pst] [negp NEG[T’pst] [vp [dp D] [pol:NEG] [v’ v [vp V[T’pst] ...]]]]].

b. [TP [T’ T] [T’pst] [negp NEG[T’pst] [vp [dp D] [pol:NEG] [v’ v [vp V[T’pst] ...]]]]].

c. [TP [T’ T] [T’pst] [negp NEG[T’pst] [vp [dp D] [pol:NEG] [dp [v’ v [vp V[T’pst] ...]]]]]].

d. [TP [dp D] [pol:NEG] [dp] [T’ T’pst] [negp NEG[T’pst] [vp <DP> [v’ v [vp V[T’pst] ...]]]]]]].

References: