It is generally accepted that harmony processes are myopic. For example, a regressive spreading process operating on the string [...w x y z...] will spread some feature [F] from z to y, without looking ahead to check whether [F] can spread all the way to w, the edge of the domain. The apparent absence of non-myopic patterns poses a substantial problem for theories in which well-formedness is assessed globally over entire surface candidates, i.e. classical Optimality Theory (classical OT; Prince & Smolensky 2004). If global evaluation is possible, nothing can prevent a process spreading [F] from z to y from first checking to see if [F] can spread all the way to w, and adjusting its behavior accordingly. Accounting for the apparent absence of non-myopic patterns has therefore led analysts to propose substantial revisions to the architecture of classical OT (e.g. Wilson 2003; McCarthy 2009, 2011), in order to exclude non-myopic processes from the predicted typology.

In this talk, I suggest that a non-myopic, long-distance [+nasal] spreading process is attested in Gurindji (Pama-Nyungan; McConvell 1988, 1993). When full application of [+nasal] spreading would create a phonotactically illicit structure, the [+nasal] trigger deletes, aborting the spreading process before it has a chance to begin. I show that the Gurindji pattern can be derived in frameworks that permit global evaluation of surface candidates (e.g. classical OT), but not in frameworks that preclude the possibility of non-myopic interactions (e.g. Harmonic Serialism). Following this, I show that Gurindji is not alone: a small but growing literature on non-myopia identifies related patterns in Central Veneto and Grado (Walker 2010), Copperbelt Bemba (Kula & Bickmore 2013), and Romanian (Steriade 2016), among others. The main conclusion is that non-myopic patterns exist, and therefore must not be excluded from the predicted typology. This has obvious implications for theories of the phonological grammar, as only those theories that allow global evaluation are capable of predicting the existence of non-myopia.